
Integrated data mapping for a software meta-tool

Jun Huh1, John Grundy1,2, John Hosking1, Karen Liu1, Robert Amor1
1Department of Computer Science and 2Department of Electrical and Computer Engineering

University of Auckland
Private Bag 92019, Auckland 1142

New Zealand
jhuh003@ec.auckland.ac.nz,{john-g,john,karen,trebor}@cs.auckland.ac.nz

Abstract

Complex data mapping tasks often arise in

software engineering, particularly in code generation
and model transformation. We describe Marama
Torua, a tool supporting high-level specification and
implementation of complex data mappings. Marama
Torua is embedded in, and provides model
transformation support for, our Eclipse-based Marama
domain-specific language meta-tool. Developers can
quickly develop stand alone data mappers and model
translation and code import-export components for
their tools. Complex data schema and mapping
relationships are represented in multiple, high-level
notational forms and users are provided semi-
automated mapping assistance for large models.
MaramaTorua is a set of Eclipse plug-ins allowing
close integration with other tools such as schema
browsers, and with the Marama meta-tool itself.

1. Introduction

Many situations require the translation of data

from one format to another. This includes:
• integrating two systems with different data file

formats e.g. Computer-Aided Design tools;
• exchanging business messages between systems

with differing protocols;
• transforming an XML document e.g. a UML

diagram to SVG for rendering;
• generating code from a high-level model in

model-driven development e.g. XMI model to
Java or C#.

Typical approaches to building such complex data
translators include: ad-hoc coding in Java, C#, or other
high level languages [28]; reusing existing translators
(if suitable) [16]; writing XSLT, ATL, QVT or other
(semi-)declarative translation scripts [3][10][31]; using
tools that generate translators from high-level, visual
specifications [1][12][13], and attempting to
automatically infer data mappings [5][6][8].

Using high-level specification tools that generate
high quality translators is the preferred approach [1]
[27][13]. This makes complex translator development
faster, more scalable and maintainable, and results in
higher quality translators than ad-hoc coding or reuse
of less appropriate existing translators. Toolsets to
generate such translators are typically either general-
purpose, supporting specification of mappings between
a wide range of models, or domain-specific and limited
to a small range of source models and target formats.
General-purpose toolsets usually provide only low-
level modeling support and limited extensibility.
Domain-specific translator generators provide higher-
level abstractions but are often inflexible and do not
support modifying built-in data mapping
specifications.

We describe MaramaTorua1 , a new multi-view,
semi-automated, translator specification environment
which provides high-level mapping specifications for
model transformation, code generation and data
mapping. MaramaTorua is built and integrated with
our Marama domain-specific visual language meta-
tool. This allows Marama users to integrate multiple
tool models, transform models and generate code and
scripts using MaramaTorua. It also means the visual
appearance, editing behavior and model semantics
checking of MaramaTorua itself can be tailored by
Marama users to support new data structures and
mappings for domain-specific data mapping tasks.
MaramaTorua “mapping agents” assist end users to
interactively specify data mappings for large source
and target schemas. A variety of target generator
technologies are supported including XSLT, ATL and
Java. Users can even use MaramaTorua to write new
translator code generators for itself e.g. a QVT or JET
data translation code generator.

We begin by presenting a motivating example for
MaramaTorua, key requirements for such a data

1 Marama is New Zealand Maori for “moon”, the generator

of an eclipse. Torua is Maori for “transformer”.

2009 Australian Software Engineering Conference

1530-0803/09 $25.00 © 2009 IEEE

DOI 10.1109/ASWEC.2009.21

111

a

b

c

d

Figure 1. Examples of complex model transformations.

mapping tool, and critiques of existing approaches. An
outline of the MaramaTorua approach follows
including its genesis in our earlier work. We then
illustrate usage and describe architecture and
implementation approaches. Our experiences with the
tool to date, and an evaluation of its strengths and
weaknesses follow together with a summary and
directions for future research.

2. Motivation

Consider the problem of translating a software

tool model from one format to another. For example, in
Figure 1 (a) a Business Process Modeling Notation
(BPMN) diagram, built with our Marama meta-tool,
represents a simple business process. Figure 1 (b) is
the XML encoding of this model. We want to translate
this into a Business Process Execution Language for
Web Services (BPEL4WS) specification, such as the
one in Figure 1 (c) for execution on a BPEL workflow
server or to another process model format for use in
our ViTABaL-WS tool [21] (Figure 1 (d)). A few of
the relationships between the BPMN document and
target BPEL4WS or ViTABaL-WS models are also
shown.

Example mapping situations that need to be
supported include:
• Simple copy of the same values with different

XML tags
• More complex, formula-based conversion of date

or address values; or a complex repeating record
structure into a non-repeating hierarchical one.

• Transformation of one Marama tool model to
another to facilitate tool integration or model-
driven development.

• Translation of a document from one format to
another to facilitate business-to-business (B2B)
enterprise system integration e.g. an ebXML
document to an EDI message [8][14].

• Export of data from one CAD package to another
e.g. a building design to a wiring design tool [2].

• Translation of a UML XMI model into a browser
renderable form e.g. Scalable Vector Graphics
(SVG), both represented by XML documents [23].
Implementing ad-hoc programming language code

for each translation is time-consuming, error-prone and
difficult to maintain. Even using more declarative
transformation and code generation-support languages
like XSLT, QVT, Velocity and JET is challenging.
Ideally an IDE supporting specification of complex
inter-model relationships and generation of translator
implementations would be used.

Over many years of research in this domain, we
and others have identified several key requirements for
such data mapping modeling and translator generator
tools. These include:

112

• Use of a variety of appropriate, high-level domain-
specific visual languages for representing both
models and mappings

• Ability to specify complex mappings easily
• Tool support to assist the user to manage the

complexity of very large model mappings
• Fully-automatic generation of translators from

high-level specifications
• Incremental support for testing and refining

mapping specifications
• Integration with other common software

engineering tools, particularly IDEs

Data transformation for data-oriented tool
integration has usually been done on an ad-hoc basis
with adaptors or translators being authored to link tools
as required [14]. While architectures have been
developed to simplify this process [16], these still
typically are reused by writing code specific to the tool
integration task at hand. A number of tool interchange
“standards” have been developed to attempt to solve
this, e.g. XMI (models) and GXL (graphs) are two
common approaches [17][24]. However, many
situations require translation between quite different
tool models to facilitate data exchange [30].

B2B information exchange via XML-based
formats has lead to development of a number of data
mapping tools for XML messaging and document
exchange. These include StylusStudio, Altova
MapForce, and our own Rimu EDI/XML data mapper
[1][14][27]. While such tools provide reasonable
abstractions for document transformation, they are
often poorly integrated with other development tools.
Many lack tool extension capability to handle complex
data mapping problems not directly supported in the
tool’s domain-specific language. Often the tools
require awareness of the target generated translator
implementation language and may require direct use of
that language for non-trivial mapping specifications.

The rise in interest in model-driven development
has led to a need to transform models of software from
high-level to low-level, and eventually to code. A
number of model transformation tools have been
developed to support this, using textual domain-
specific languages. These include QVT, ATL and
Apache Velocity [3][10][31]. Some, like ATL, have
relatively good IDE support via Eclipse and Visual
Studio. However, data transformation authors still need
to write scripts and expressions over abstract data
structures, often using XPath, XQuery and similar
query languages. Higher-level mapping tools have
been prototyped that generate QVT and similar
implementations from more declarative specifications
[3][4][18][19]. However, mapping large complex data
models textually means translator authors still lack

support for visualizing relationships and understanding
the larger structure of the mappings and schema [13].

Code generators have been an active area of
research and practice for many years. Traditionally
these were either custom-written code, template
engines like Eclipse JET [11] or Apache Velocity [3],
or “unparsers” that specified mappings from abstract
syntax representations to code. As with data mapping
languages like XSLT, model transformation with
languages like ATL is difficult and time-consuming for
large models. Recent approaches have supported code
generator extension and reuse via techniques such as
aspect-oriented extension [28] and composition [16].
While improving mapper development, these
approaches still use textual specifications and lack
high-level visualizations of the mapping process.

Attempts have been made to automatically derive
model translators, particularly for automated database
schema mapping [6][7][26]. These are attractive as a
translator can be theoretically synthesized by
comparing source and target schema automatically. In
reality only limited parts of complex model
transformation can be done in a purely automated way
[26][30][5]. Our experience is that semi-automated
mapping agents can greatly assist translator authors but
must be limited to subsets of schema and coupled with
good schema and mapping visualization support [5].

In our own prior work we have developed a range
of data mapping specification and translator tools.
These include a declarative data mapping language and
interpreter for CAD tool integration; an EDI message
mapping specification and domain-specific language
generator tool; a business data mapping tool; and
mapping tool supporting notation transformation for
CASE tool integration [5][13][20]. Empirical studies
show the tools provide good support for specifying and
generating complex data mappings in their respective
domains. However they suffer from similar limitations:
• a single, one-size-fits-all domain-specific visual

language;
• limited ability to generate alternate translator

codings;
• no integration with other software tools;
• no support for managing large source and target

data models;
• minimal ability for end-user customization

Each of these problems, model transformation,
code generation and tool data transformation, is
actually a subset of the general data mapping problem.
In each case we are trying to translate a model in one
format to another, either: an orthogonal model (for tool
import/export and integration); a lower-level model
(for code generation and model-driven engineering); or
a higher-level, more abstract model (for reverse-

113

engineering and data and/or software visualization).
All benefit from the provision of high-level, visual data
mapping support; assistance to the user for large data
mapping problems; automatic data mapping generation
from the high-level mapping language; and an
integrated IDE with other software tools.

3. Our approach

We have looked to address the limitations of our

own and other data mapping generation tools via a
multi-view IDE extension approach. Our experiences
have shown us that a single visual metaphor for source
and target data models and mappings is insufficient
[13] and the mapping specification tool must be well
integrated with other software tools. Thus for Marama
Torua, we support multiple views of the data models
and mapping specifications using different visual
metaphors and have implemented the tool as an
Eclipse plug-in enabling close data, control and
presentation integration with a wide range of other
software tools. The MaramaTorua meta-model enables
a wide range of source and target data models and
complex mapping specifications to be represented.
This allows the tool to be applied widely; provides
users with a wide range of visual metaphors; and
allows multiple target translator implementation code
generators to be supported.

Figure 2 outlines MaramaTorua’s use to engineer
complex data mapping translators. The user imports
existing XML Schema to provide the source and/or
target data format specifications (1). These schema
may be manually created, automatically generated e.g.
from the Marama meta-tool, or 3rd party. If no schema
exists (a common problem) users may define one with
MaramaTorua’s schema editor or an existing Eclipse
schema editor (2). If the user has example XML data
models they may ask for a schema to be generated
using a web services link to the Microsoft schema
inference engine (3). The user then specifies mappings
between source and target schema elements (4). These
may be quite simple e.g. copy source to target data
item, or complex e.g. iterate over source collection
filtering on specified data item values and create new
target data structures. The source and target schema
may be large e.g. >1,000 elements in which case the
user is assisted by “mapping agents” that provide
interactive suggestions based on source/target element
tag names equivalence or similarity; element types;
complex structure similarities; and example data item
equivalences. The user may reuse mapping functions
from MaramaTorua’s extensible library. Multiple
views allow the user to split up complex mappings. In
addition, multiple representations of the source and

target schema are supported, including a tree-based
schema view type and a “business form” view type.

 Eclipse IDE

MaramaTorua

Schema mapping view(s)

MaramaTorua

Source
schema

MaramaTorua

Source
schema

Target
schema

Source
schema

Target
schema

1. Import
XML

Schema

2. Define
Schema or infer
from XML data

file(s)

MS Schema
Inference server

4. Specify mappings
between schema items

MaramaTorua

Schema mapping model

Source Target

.xsd

.xml .xsd

5. Generate
data

translator(s) xslt, Java, …

Semi-automatic
mapping agents

Library of
functions

MaramaTorua

View Mapping Progress…

Source Target

Source
Data

Target
Data Xalan

+Java
code

6. Load
translator and
source data
file(s); run

transaltor to
produce target
data files(s)…

.xml .xml

3. Infer
schema

Figure 2. Outline of using MaramaTorua.

After completing the mapping specification the
user requests generation of a translator. MaramaTorua
uses mapping specifications and reusable mapping
functions to synthesize a translator implementation.
Typically this is a set of XSLT scripts with extra Java
classes for e.g. string manipulations (which are poorly
supported by XSLT) (5). Other target translator
implementation languages can also be used e.g. ATL
or pure Java code. Users can test their translators by
loading the translator code and example source data
files into MaramaTorua. The user can view the result
of running the translator on all or parts of the example
input models (6). MaramaTorua is integrated with the
Marama meta-tool and its generated translators can be
used directly within Marama-generated tools to
support model integration, translation, and code
generation.

4. Example input

To demonstrate MaramaTorua’s capabilities we

revisit the examples in Figure 1. Here the tool
developer/ integrator wants to specify a code generator
(BPMN->BPEL4WS) and an import/export
mechanism (BPMN<->ViTABaL-WS) for their
BPMN tool.

MaramaTorua provides two additional meta-tool
specification views for the Marama meta-tool: a
schema specification view and a data mapping view. A
tool developer first obtains an XML Schema for
BPMN. In this case, they import the meta-model for a
Marama-specified BPMN tool into a new Marama
Torua schema view. Figure 3 (a) shows part of the
Marama meta-model view for the MaramaBPMN tool.
Figure 3 (b) shows this schema represented in a
MaramaTorua schema view. Marama uses a simple

114

Extended Entity-Relationship meta-model notation.
MaramaTorua uses a more abstract representation than
either EER or XMLSchema to minimize unnecessary
detail and to support different underlying schema
models than just XMLSchema, e.g. EXPRESS-G.

a

b

Figure 3. Viewing an XML Schema for BPMN imported

from the Marama meta-modelling tool.

To map BPMN to ViTABaL-WS and BPEL4WS,
the user must also obtain or define their schema. The
ViTABaL-WS schema is also imported from its
Marama meta-model but we lack one for BPEL4WS.
We could manually define one with the schema editor,
but this would be time consuming. However, we have
an example BPEL4WS XML data file and can obtain
an initial schema for it by submission to the Microsoft
schema inference web service. This is done via a

MaramaTorua dialog box and the inferred schema is
loaded into a MaramaTorua schema editor view.

The tool developer now creates two mapping
specifications, to respectively map MaramaBPMN data
to ViTABaL-WS and BPEL4WS data. Both use
moderately complex mapping conditions, repeating
group copies and formulae. In Figure 4 (a) the user
begins to specify data mappings between BPMN
schema items (left) and BPEL4WS schema items
(right). Here the user begins by expanding the root
schema nodes for the BPMN (left) and BPEL4WS
models (right). The user specifies mappings between
elements in the source and target models via drag and
drop. Mappings can be one-to-one, one-to-many,
many-to-one or many-to-many. A central mapping
node captures the relationship. The tool developer uses
this to specify calculations or functions needed to
complete the transformation. In Figure 4 (a) a simple
one-to-one equality mapping has been specified
between the BPMN name element and BPEL4WS name
element. The mapping of BPMN eventStart to
BPEL4WS process switch is more complex so has been
expanded as sub-mapping (eventStartMapping)
immediately below.

As the mapping specification develops, challenges
arise. Some transformations are conditional on content
i.e. not dependent on the static model but on values the
XML instance data will contain. For example in Figure
4 (b), the mapping of the BPMN Process process
element to the BPEL4WS process sequence invoke
element is conditional (represented by the rhombus) on
whether its id value equals the value of the decimal id
parameter passed from a higher level mapping, and
also on not being a receive process type. Figure 4 (c)
shows the conditional expression involved specified
using a structured formula builder. This has XPath-
style expressions to access the id and type element
values. More complex paths can be easily specified.

Mappings that are more complex than equalities
are specified using mapping formulae. These may
involve parameterized mapping functions (predefined
or user specified). For example in Figure 4 (d), a
parameterized substring function maps the BPMN
Process process name to the BPEL4WS process
sequence invoke element’s name.

For complex mappings, MaramaTorua integrates
AXSM, an automated mapping suggestion tool [5] into
the mapping view so the user does not have to
manually specify every mapping relation. This feature
heuristically predicts and visualizes potential mappings
to the end user, who may then choose to accept or
decline any of the mapping suggestions; resulting in
further cycles of automated prediction and updated

115

c

a

b
d

Figure 4. Specifying mapping relationships in the mapping view.

Figure 5. Semi-automated data mapping.

Figure 6. Using the form-based mapping view.

mapping suggestions based on prior user selections.
AXSM uses extensible mapping agents written in Java.
MaramaTorua integrates the AXSM extensible library
into its run-time environment so new algorithms for
mapping agents may be added dynamically within the
IDE on the fly. Figure 5 (top) shows an example of
mapping predictions. In several cases unique
suggestions are made, in others (such as to the
BPEL4WS portType attribute) multiple suggestions are
made which the user must select between. In Figure 5
(bottom) the user has accepted several suggestions
(including one of those for portType) and these have
been converted into equality mappings. Two suggested
mappings (bottom) await user acceptance or rejection.

As an alternative to the “conventional” indented
hierarchical view of the mapped schemas, Marama
Torua supports a form based mapping metaphor we
have previously developed [13]. Here the schema may
be structured in a similar fashion to a conventional
business form, with structure depicted by containment
and field placement rather than hierarchy. Mappings
are specified by drag and drop between form fields.
This metaphor is not particularly apt for our running
example, which is programmer centric. Nevertheless,
Figure 6 shows the high level BPMNProcess to
BPEL4WS process mapping represented using this
metaphor. For non programmers, e.g. business
analysts, this metaphor offers a more user friendly
representation than the conventional tree based
representation. We are also exploring other types of
concrete metaphor.

116

The next step is to generate mapping code and test
it. Figure 7 shows this process. At top is a fragment of
the XSLT code generated for the BPMN to BPEL4WS
mapping. Below is the invocation panel used to
execute and test mappings. At left, an XML source file
is shown. In the next sub-panel, the generated XSLT
mapping is shown. The third panel shows XML output
generated as the mapping is executed. At right a
debugger interface allows step by step execution of the
mapping to be undertaken with status information such
as the current XSLT line number and element shown.
Corresponding elements in the XSLT and XML code
are also highlighted.

As the final step the generated mapper is installed
in the Marama BPMN tool, so its users can generate
BPEL from their BPMN diagrams. At left of Figure 8,

the user selects the MaramaTorua generated code to
add to the BPMN tool. This is added as a plugin,
attached to a newly defined handler (a behavioural
extension to the Marama tool), as shown in the next
screen dump. This handler is invoked from a context
sensitive menu element in the BPMN diagram editor
view and uses the BPMN tool model as its input. The
resulting BPEL output is shown at the right.

MaramaTorua, being implemented using Marama,
has highly customizable appearance and functionality.
Users may customize its icons and connectors and add
their own event handlers and menu actions by writing
extensions as Marama Java event handlers. Useful
example extensions include: visualising the mapping in
a new display format; visualization layout algorithms;
and new interactions with user developed tools.

Figure 7. Generating and testing translators.

Figure 8. Installation of a mapper into a Marama-generated visual modeling tool.

117

5. Architecture/implementation

We built MaramaTorua with our Marama meta-

tool [15]. We have integrated MaramaTorua back into
Marama as a meta-tool component to support
specification of tool integration, model translation and
code generation for Marama-based tools. However, we
have maintained separation of Marama and Marama
Torua, both being fully functional as stand alone tools.

 Eclipse IDE

Marama
meta-tool
Plug-ins

MaramaTorua plug-in

Schema view

Mapping view

Mapping & schema model

Schema
importer- from
Marama XMI

Schema inferer-
from Microsoft WS

Schema loader

Xalan XSLT
Engine

Marama event
handler generator

XSLT
generator

Java
generator

Java
functions

.xsd

Marama
meta-model
definition

Marama
event

handlers

.xslt .java Source
.xml Target

.xml

Mapping
tester

(1) MaramaToru
tool definition

(2a)

(2b)

(2c)

(3)

(5)

(7)

(8)

(9)

(10a) (10b)

(12) (11) (13)

(6)

Agents (4)

Figure 9. High-level architecture of MaramaTorua.

Figure 9 is the high-level architecture of Marama
Torua. It is defined using Marama and instantiated as
models and editors in Eclipse (1). Users import source
and target schema into the tool from Marama meta-
model definitions (2a); XML Schema (2b); or via a
web service link to the Microsoft schema inference
engine to generate schema from sample XML data
files (2c). Users may modify inferred schema or create
new ones from scratch (3). A set of “mapping agents”
assist with identifying mappngs between large schemas
(4). As schema and data mapping views are
manipulated a MaramaTorua model is constructed (5).
The user may make use of pre-built functions from a
Java (or other translator implementation e.g. XPath for
XSLT) library for very complex transformations (6). If
necessary, extra functions, e.g. for date conversions,
text and address parsing, can be implemented using
Eclipse and exposed via the MaramaTorua library.

The completed mapping is then used to generate
the translator, e.g. as XSLT (7), helper functions/
scripts, e.g. Java functions for text parsing (8), and
possibly a Marama event handlers to be plugged into a
Marama tool (9) so the tool can invoke the translator.
The generated data mapper can be tested in Marama
Torua (10a) or from within a Marama-generated tool
(10b). To use a translator, its implementation is loaded

and run by an appropriate engine e.g. Xalan for XSLT.
The data mapper is given one or more source XML
files and it transforms these according to its
specification into one or more target XML files

In developing MaramaTorua several key design
and implementation decisions were made. Firstly, the
visual notations used are abstract and do not adhere to
an existing language. They were initially developed
from our experience with data mapping problems in
the health messaging and construction tool integration
domains, areas where data mapping problems are
common. The visual notations declaratively highlight
the structural differences between the schemas being
mapped instead of visually expressing how mapping
should be undertaken procedurally. This has
advantages of clarity and readability, where details
such as individual formulae (best expressed textually
anyway) are not shown. The approach also provides
the ability to easily extend the tool to generate
additional output formats. Secondly we made a clean
separation of the meta-tool from MaramaTorua. Both
plug-ins are fully functional as stand alone tools. The
integration of the two was undertaken at a higher level.
This coordinates the flow of the data between the two
plug-ins by passing meta-tool definitions as mapping
schemas and linking generated mapping outputs with
tools designed by the meta-tool. Finally, MaramaTorua
takes advantage of modularized components, to ease
the development costs of writing new schema loaders,
output generators, and mapping agents. Loading
schemas can be undertaken in many ways, including;
loading from XSD files with schema loaders; loading
from an XML instance by creating a schema through
Microsoft XSD inference tool; and importing from the
meta-tool. New schema loaders can be written giving
MaramaTorua the extensibility to load schemas from
any possible data source or data structure. Since the
loaded schemas are converted to abstract
MaramaTorua notations, mappings can be specified
between schemas that have been generated from
different source formats. The same is true for writing
output generators. There is a high level of
customizability here with output generation to any
form of language possible.

6. Discussion

We have used MaramaTorua on a wide range of

mapping problems including:
• BPMN->BPEL4WS code generation;
• generation of Java from a Marama UML tool;
• import of XMI design models into a UML tool;
• conversion of Marama diagrams into SVG format

for thin-client web browser rendering;

118

• data exchange between the Web of Patterns (RDF)
and the MaramaDPTool design pattern tool [9];

• several large XML to XML data translations for
E-business application integration.
Some of these are complex data translations; e.g.

the E-business models have over 1,000 XML Schema
elements. MaramaTorua allows users to not only
define these complex data mappings but do so
incrementally and with incremental testing. We have
further evaluated the effectiveness of MaramaTorua in
two ways: an end user evaluation; and its completeness
against the key requirements in Section 2.

Our end user evaluation had four experienced data
translator implementers carry out a set of mapping
tasks (parts of the BPMN->BPEL4WS problem). They
used MaramaTorua to model the schema, specify a
range of mappings, generate an XSLT-based translator,
and test it. Overall results were very favorable with all
users able to carry out the task in orders less time than
directly implementing Java or XSLT translators. Users
expressed overall satisfaction with MaramaTorua’s
capabilities. Some difficulties found were modeling
conditional mappings and string parsing operations and
the specification of complex expressions using the
MaramaTorua formula editor. Users desired a “design
by example” approach for the latter using actual source
and target values with the tool inferring conversions.

From Section 2’s requirements, MaramaTorua is a
highly integrated environment for modeling and
generating complex data mapping implementations
using a set of high level domain specific visual
languages and both a tree-based, schema-oriented
visual language and a “business form” based visual
language for modeling mappings. Users can import
source and target schema from existing XML Schema,
the Marama meta-tool, model a schema themselves, or
have one inferred from example data. MaramaTorua
supports specification of complex large-scale data
mapping using multiple views, elision, and mapping
agents to help manage very large search spaces. It also
provides a testing environment allowing users to
incrementally specify and test mappings. In addition,
MaramaTorua provides close integration with Marama
allowing tool designers to use MaramaTorua as
another meta-tool capability, generating event handlers
that plug into Marama-generated tools to support
import/ export, model transformation and code
generation.

Limitations involve specification of complex
expressions and collection-manipulating operations
(difficult in most mapping specification tools) and the
lack of use of “concrete” example data during the data
mapping process. We have previously added example
data to aid mapping specification in earlier tools

[14][20] and plan to use a similar approach for
MaramaTorua. We are developing structured textual
representations of source and target schema using
Eclipse’s textual editor framework to support a
metaphor like the form-based mapping views where
source and/or target schema have a textual concrete
representation e.g. code or scripts.

A more fundamental limitation is that to be able to
specify mappings that exceed a certain complexity
level, the user needs to be sufficiently familiar with the
target language (XSLT) to be able to specify the
mapping textually in the first place. This means that
when the problem is simple, MaramaTorua can be used
effectively to aid people who have little knowledge of
XSLT to specify mappings, but when the problem is
complex, the tool is more of a visualization aid, with
lower levels of productivity enhancement. This could
be improved by introducing more abstract notations
tailored to common structural mapping problems. We
should stress that this point relates to the mapping’s
structural complexity not its size. The latter is well
addressed using the mapping agents which provide a
high level of productivity enhancement.

Areas for future work include the following.
Providing additional, more “concrete” views would
better support mapping specification. These could
include code/script text views for code generation and
shape/icon specification for mapping from one
diagram format to another. It is also desirable to
support example data values in-situ in the source/target
schema elements. The loaded values can be used to
guide manual specification of mappings by the
designer or as additional mapping suggestions for the
semi-automatic mapper. At execution time, this
provides a natural mechanism for visualizing execution
behavior. The system does not currently support
translation of constraints, which are essential for full
model transformation. We are currently developing a
higher level model transformation specification
language that addresses this shortcoming.

7. Summary

Implementing data-based integration, import-

export, model transformation and code generation
capabilities in software tools is challenging. We have
developed an integrated, visual language-based toolset,
MaramaTorua, to support these activities for Eclipse-
based software tools. Users import, define or have
inferred XML Schema which they specify mappings
between, with the aid of mapping agents for large-scale
problems. Data translators are synthesized from these
schema mapping specifications, including XSLT and
Java-based implementations. MaramaTorua provides
an integrated environment for modeling, generating

119

and testing these data mappers. These generated data
mappers may be seamlessly integrated into other
Marama-generated tools to support their import/export,
model transformation and code generation needs.

8. References
[1] Altova, MapForce ,
www.altova.com/products/mapforce/data_mapping.html.
[2] Amor, R., Hosking, J.G., Mugridge, W.B. ICAtect-II: a
framework for the integration of building design tools, In
Automation in Construction, 8(3) 1999, 277-289.
[3] Apache Velocity, http://velocity.apache.org/
[4] Bichler, L. A flexible code generator for MOF-based
modeling languages, Proc 2nd OOPSLA Workshop on
Generative Techniques in the context of Model Driven
Architecture.
[5] Bossung, S., Stoeckle, H., Grundy, J.C., Amor, R. and
Hosking, J.G. Automated Data Mapping Specification via
Schema Heuristics and User Interaction, In Proc Int Conf on
Automated Software Engineering, Linz, Austria, September
20-24, IEEE CS Press, pp. 208-217.
[6] Bottcher, S. and Grope, S. Automated data mapping for
cross enterprise data integration, In Proc 2003 International
Conference on Enterprise Information Systems, 2003.
[7] Bourret, R., Bornhövd, C., Buchmann, A.P.: A Generic
Load/Extract Utility for Data Transfer Between XML
Documents and Relational Databases, In Proc 2nd Intl
Workshop on Advanced Issues of Electronic Commerce and
Web-based Inf Systems, San Jose, California, June, 2000.
[8] Damm, D., Hakimpour, F. and Geppert, A. Translating
and Searching Service Descriptions Using Ontologies,
LNCS, Volume 2681/2003, Springer.
[9] Dietrich, J., Elgar, C.: Towards a Web of Patterns,
Workshop on Semantic Web Enabled Software Engineering
(SWESE) Proc ISWC 2005, Galway, Ireland, 2005.
[10] EclipseModel-to-model transformations,
www.eclipse.org/m2m/
[11] Eclipse Model to Text,
http://www.eclipse.org/modeling/m2t
[12] Goulde, M.A. Microsoft's BizTalk Framework adds
messaging to XML, E-Business Strategies & Solutions, Sept.
1999, 10-14.
[13] Grundy, J.C, Hosking, J.G., Amor, R., Mugridge,
W.B., Li, M. Domain-specific visual languages for
specifying and generating data mapping systems, JVLC, vol.
15, no. 3-4, June-August 2004, Elsevier, pp 243-263.
[14] Grundy, J.C., Mugridge, W.B., Hosking, J.G. and
Kendal, P. Generating EDI Message Translations from
Visual Specifications, In Proc Automated Software
Engineering Conference, San Diego, 2001, IEEE, pp. 35-42.
[15] Grundy, J.C., Hosking, J.G., Zhu, N. and Liu, N.
Generating Domain-Specific Visual Language Editors from
High-level Tool Specifications, In Proc Automated Software
Engineering Conf, Tokyo, 24-28 Sept 2006, IEEE.

[16] Henthorne, C. and Tilevich, E. Code Generation on
Steroids: Enhancing COTS Code Generators via Generative
Aspects, In Proc 2nd International Workshop on
Incorporating COTS Software into Software Systems: Tools
and Techniques, Minneapolis, 2007, IEEE CS Press.
[17] Holt, R.C., Winter, A., and Schurr, A., GXL: Toward a
Standard Exchange Format, In Proc Seventh Working
Conference on Reverse Engineering, IEEE CS Press, 2000.
[18] Lengyel L., Levendovszky T., Mezei G. and Charaf H.,
Model-Based Development with Strictly Controlled Model
Transformation, Proc 2nd Intnl Workshop on Model-Driven
Enterprise Information Systems, Paphos, Cyprus, 2006.
[19] Levendovszky T., Lengyel L., Mezei G. and Charaf H.,
A Systematic Approach to Metamodeling Environments and
Model Transformation Systems in VMTS, Int Workshop on
Graph-Based Tools, In Electronic Notes in Theoretical
Computer Science, 2007.
[20] Li, Y., Grundy, J.C., Amor, R. and Hosking, J.G. A
data mapping specification environment using a concrete
business form-based metaphor, In Proc Int Conf on Human-
Centric Computing, IEEE, 2003 pp. 158-167.
[21] Liu, A., Grundy, J.C. and Hosking, J.G., A visual
language and environment for composing web services, In
Proc Int Conf on Automated Software Engineering, Long
Beach, California, Nov 7-11 2005, IEEE Press, pp. 321-324.
[22] Liu, A., Hosking J.G., and Grundy, J.C., MaramaTatau:
Extending a Domain Specific Visual Language Meta Tool
with a Declarative Constraint Mechanism, Proc IEEE
VLHCC, Coeur d'Alène, Idaho, September 2007
[23] Mansfield, P. Common graphical object models and
how to translate them to SVG, SVG Open / Carto.net
Developers Conference, Zurich, July 15-17, 2002.
[24] OMG, MOF 2.0 / XMI Mapping Specification, v2.1,
http://www.omg.org/technology/documents/formal/xmi.htm
[25] Pervasive.com, Pervasive Integration Manager,
http://www.pervasive.com/.
[26] Rahm, E. and Bernstein, P. A survey of approaches to
automatic schema matching, JVLB, 10(4), 2001, 334 – 350
[27] StylusStudio, StylusStudio XML-to-XML Mapper,
www.stylusstudio.com/xml_to_xml_mapper.html.
[28] Swint, G. et al, GXX – Extensible, Flexible, Modular
Code Generator, Proc Int Conf on Automated Software
Engineering, Long Beach, USA, November 7-11, 2005.
[29] Tolvanen, J.-P., Making model-based code generation
work - Practical examples (Part 2), Embedded Systems
Europe, Vol. 9, 64 (March), 2005.
[30] Tratt, L., Model transformations and tool integration,
Software and Systems Modeling, 4(2), Springer, pp. 112-122.
[31] UML-QVT, http://umt-qvt.sourceforge.net/

120

